Extensions 1→N→G→Q→1 with N=C22xC4 and Q=S3

Direct product G=NxQ with N=C22xC4 and Q=S3
dρLabelID
S3xC22xC448S3xC2^2xC496,206

Semidirect products G=N:Q with N=C22xC4 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C22xC4):1S3 = C4xS4φ: S3/C1S3 ⊆ Aut C22xC4123(C2^2xC4):1S396,186
(C22xC4):2S3 = C4:S4φ: S3/C1S3 ⊆ Aut C22xC4126+(C2^2xC4):2S396,187
(C22xC4):3S3 = C2xD6:C4φ: S3/C3C2 ⊆ Aut C22xC448(C2^2xC4):3S396,134
(C22xC4):4S3 = C4xC3:D4φ: S3/C3C2 ⊆ Aut C22xC448(C2^2xC4):4S396,135
(C22xC4):5S3 = C23.28D6φ: S3/C3C2 ⊆ Aut C22xC448(C2^2xC4):5S396,136
(C22xC4):6S3 = C12:7D4φ: S3/C3C2 ⊆ Aut C22xC448(C2^2xC4):6S396,137
(C22xC4):7S3 = C22xD12φ: S3/C3C2 ⊆ Aut C22xC448(C2^2xC4):7S396,207
(C22xC4):8S3 = C2xC4oD12φ: S3/C3C2 ⊆ Aut C22xC448(C2^2xC4):8S396,208

Non-split extensions G=N.Q with N=C22xC4 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C22xC4).1S3 = A4:C8φ: S3/C1S3 ⊆ Aut C22xC4243(C2^2xC4).1S396,65
(C22xC4).2S3 = A4:Q8φ: S3/C1S3 ⊆ Aut C22xC4246-(C2^2xC4).2S396,185
(C22xC4).3S3 = C12.55D4φ: S3/C3C2 ⊆ Aut C22xC448(C2^2xC4).3S396,37
(C22xC4).4S3 = C6.C42φ: S3/C3C2 ⊆ Aut C22xC496(C2^2xC4).4S396,38
(C22xC4).5S3 = C2xDic3:C4φ: S3/C3C2 ⊆ Aut C22xC496(C2^2xC4).5S396,130
(C22xC4).6S3 = C2xC4.Dic3φ: S3/C3C2 ⊆ Aut C22xC448(C2^2xC4).6S396,128
(C22xC4).7S3 = C12.48D4φ: S3/C3C2 ⊆ Aut C22xC448(C2^2xC4).7S396,131
(C22xC4).8S3 = C2xC4:Dic3φ: S3/C3C2 ⊆ Aut C22xC496(C2^2xC4).8S396,132
(C22xC4).9S3 = C23.26D6φ: S3/C3C2 ⊆ Aut C22xC448(C2^2xC4).9S396,133
(C22xC4).10S3 = C22xDic6φ: S3/C3C2 ⊆ Aut C22xC496(C2^2xC4).10S396,205
(C22xC4).11S3 = C22xC3:C8central extension (φ=1)96(C2^2xC4).11S396,127
(C22xC4).12S3 = C2xC4xDic3central extension (φ=1)96(C2^2xC4).12S396,129

׿
x
:
Z
F
o
wr
Q
<